p-Process Sm and Nd Isotope Variations in Chondritic Meteorites

Upadhyay, Dewashish¹ Mezger, Klaus¹

¹Zentrallabor für Geochronologie, Institut für Mineralogie, Universität Münster

High precision Sm and Nd isotope measurements on bulk samples of chondritic meteorites reveal the presence of anomalous ¹⁴⁴Sm and ¹⁴²Nd relative to terrestrial abundances. All analyzed chondrites have negative ¹⁴²Nd anomalies ranging from -14 to -41 ppm while anomalies in 144 Sm are variable. The carbonaceous chondrites have 144 Sm deficits ranging from -84 to -16 ppm while the ordinary chondrites show both deficits and excesses in ¹⁴⁴Sm ranging from -45 to +74 ppm. An enstatite chondrite has a negative anomaly of 47 ± 24 ppm while a Rumuruti chondrite has a 69 ± 40 ppm ¹⁴⁴Sm excess. ¹⁴⁴Sm is produced exclusively by p-process nucleosynthesis while ¹⁴²Nd has a small p-process contribution. The ¹⁴⁴Sm and ¹⁴²Nd isotope anomalies thus clearly point towards a heterogeneous distribution of pprocess Sm and Nd nuclides in the solar nebula. This is confirmed by the lack of correlation between ¹⁴²Nd and the Sm/Nd, an indication that the ¹⁴²Nd variations in chondrites cannot be explained by radiogenic production from the β -decay of ¹⁴⁶Sm. The ¹⁴²Nd anomalies do not correlate with variations in ¹⁴⁴Sm, an indication that p-process Sm and Nd isotope sources were not coupled. Variations in the abundances of p-process Sm and Nd isotopes has significant implications for the use of the short-lived ¹⁴⁶Sm-¹⁴²Nd radiometric system because a heterogeneous distribution of ¹⁴⁴Sm implies that the now extinct ¹⁴⁶Sm, another p-process nuclide, must also have been non-uniformly distributed in the solar nebula. The use of this radiometric system in understanding early planetary processes can be seriously compromised by the heterogeneous distribution of both the radioactive parent (i.e., ¹⁴⁶Sm) and the radiogenic daughter (i.e., ¹⁴²Nd). Under such conditions, the ¹⁴⁶Sm-¹⁴²Nd system can be meaningfully used for deciphering early planetary differentiation only if the ¹⁴⁶Sm and ¹⁴²Nd abundances of bulk planetary bodies can be precisely constrained. These observations put a question mark on the suitability of chondrites as a reference relative to which ¹⁴⁶Sm-¹⁴²Nd isotope variations in planets can be characterized.

Abs. No. **102** Meeting: **DMG 2008** submitted by: **Upadhyay, Dewashish** email: **upadhyay@uni-muenster.de** date: **0000-00-00** Req. presentation: **Vortrag** Req. session: **S02**