Natural Fractionation of Stable and Radiogenic Strontium Isotope Ratios - Implications for Continental Chemical Weathering and Seawater History

Eisenhauer, Anton¹ Fietzke, Jan¹ Böhm, Florian¹ Liebetrau, Volker¹

¹Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Wischhofstr. 1-3, 24148 Kiel

The stable ⁸⁸Sr/⁸⁶Sr-ratio has traditionally been considered to be a constant value in order to correct instrumental mass fractionation during measurement of the radiogenic strontium ratio (87 Sr/ 86 Sr). However, recent high precision measurements (Fietzke and Eisenhauer, (2006)) showed that the natural ⁸⁸Sr/ 86 Sr ratio is not stable, but rather variable and temperature dependent. Variations of the ⁸⁸Sr/ 86 Sr-ratios are expressed in the usual δ -notation: $\delta^{88/86}$ Sr=((88 Sr/ 86 Sr)_{sample}/(88 Sr/ 86 Sr)_{NBS987}-1)*1000, where $\delta^{88/86}$ Sr_{NBS987}=0. The recent measurements also showed that the presently accepted (88 Sr/ 86 Sr)-value for seawater is off by about 0.4 % from the $\delta^{88/86}$ Sr_{NBS987} value. This in turn implies that the 87 Sr/ 86 Sr isotopic ratio in seawater not corrected for natural isotope fractionation is also significantly different from its normalized value (87 Sr/ 86 Sr=0.70916). With regard to the $\delta^{88/86}$ Sr_{seawater} value, the not normalized 87 Sr/ 86 Sr is estimated to be around 0.70930. First studies on continental rocks and minerals indicate that they are significantly lighter than seawater by about 0.3 % and presumably become fractionated due to dissolution, precipitation of secondary mineral phases and biological utilization ((deSouza et al., 2007), (Halicz et al., 2007)). Together the observation of natural 88 Sr/ 86 Sr and 87 Sr/ 86 Sr fractionation has major implications on the existing models for continental weathering and the seawater history. For further studies the combination of $\delta^{88/86}$ Sr an 87 Sr/ 86 Sr data may provide a unique solution for three-component mixing processes and a way of distinguishing fractionated sources ans sinks that balance the supply of Sr to seawater. This may help to elucidate the link between continental weathering and atmospheric pCO₂ on geological time scales.

References

deSouza G., Reynolds B., and Bourdon B. (2007) Evidence for Stable Strontium Isotope Fractionation during Chemical Weathering. *17th Goldschmidt Conference*.

Fietzke J. and Eisenhauer A. (2006) Determination of temperature-dependent stable strontium isotope (⁸⁸Sr/⁸⁶Sr) fractionation via bracketing standard MC-ICP-MS. *Geochmistry, Geophysics, Geosystems* 7(8), doi:10.1029/2006GC001243.

Halicz L., I. Segal, N. Fruchter, B. Lazar, and Stein M. (2007) ⁸⁶Sr/⁸⁸Sr Ratio by ICP-MS-MC as a New Tracer of Terrestrial Geochemical Processes. *17th Goldschmidt Conference* 2007.

Abs. No. **156** Meeting: **DMG 2008** submitted by: **Eisenhauer, Anton** email: **aeisenhauer@ifm-geomar.de** date: **2008-05-29** Req. presentation: **Vortrag** Req. session: **S13**