Calibrating the Hafnium-Tungsten and Aluminium-Magnesium Clocks

Kleine, Thorsten¹ Burkhardt, Christoph¹ Bourdon, Bernard¹ Irving, Anthony²

¹ETH Zurich, Institute for Isotope Geochemistry and Mineral Resources, Clausiusstrasse 25, 8092 Zurich, Switzerland ²Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA

Short-lived nuclides such as ²⁶Al and ¹⁸²Hf are among the most important chronometers for constraining the duration of processes in the early solar system but their use as chronometers is highly dependent on the assumption that they were homogeneously distributed in the early solar system. Here we present internal ¹⁸²Hf-¹⁸²W isochrons for angrites and CAIs and use these data, in combination with previously published results for the ²⁶Al-²⁶Mg system, to assess the initial distribution of ²⁶Al and ¹⁸²Hf in the early solar system. We obtained precise ¹⁸²Hf-¹⁸²W isochrons for several angrites, whose ²⁰⁷Pb-²⁰⁶Pb ages range from ca. 4558 Ma to ca. 4565 Ma (Amelin 2008). The Hf-W results for angrites and CAIs are consistent with the ²⁶Al-²⁶Mg results for these samples (Bivak-Spirndorf et al. 2005), indicating that both 26 Al and 182 Hf were homogeneously distributed in the early solar system. Consequently, relative ages obtained from the ²⁶Al-²⁶Mg and ¹⁸²Hf-¹⁸²W systems have chronological significance. The ¹⁸²Hf-¹⁸²W results are also consistent with the 207 Pb- 206 Pb ages for angrites: the 182 Hf decay constant determined from the regression of log(182 Hf/ 180 Hf) vs. ²⁰⁷Pb-²⁰⁶Pb age is identical to the experimentally determined value of the ¹⁸²Hf decay constant (Vockenhuber et al. 2004). This provides evidence that absolute 182 Hf- 182 W ages calculated relative to any of these angrites are robust and accurate. The absolute ¹⁸²Hf-¹⁸²W age for CAIs relative to the angrites D'Orbigny and Sahara 99555 is 4568.6±0.5 Ma, which is significantly older than the most precise ²⁰⁷Pb-²⁰⁶Pb age for CAIs (Amelin et al. 2002). This probably reflects disturbance of the ²⁰⁷Pb-²⁰⁶Pb systematics in CAIs. ²⁰⁷Pb-²⁰⁶Pb ages for Allende chondrules (Connelly et al. 2008; Bouvier et al. 2008) are 1-3 Ma younger than 4568.6 \pm 0.5 Ma, consistent with the 26 Al- 26 Mg age difference between CAIs and chondrules from CV-like chondrites (Hutcheon et al. 2000). References:

Amelin Y et al. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297: 1678-1683

Amelin Y (2008) U-Pb ages of angrites. Geochim. Cosmochim. Acta 72: 221-232

Bouvier A et al. (2008) Pb-Pb systematics of an Allende chondrule. Geochim. Cosmochim. Acta 72: A106

Connelly J et al. (2008) Chronology of the solar system's oldest solids. Astrophys. J. 675: L121-L124

Hutcheon I et al. (2000) ²⁶Al in anorthite-rich chondrules in primitive carbonaceous chondrites: evidence chondrules postdate CAI. Lunar Planet. Sci. Conf. XXXI: 577

Spivak-Birndorf L et al. (2005) ²⁶Al-²⁶Mg chronology of the D'Orbigny and Sahara 99555 angrites. Met. Planet. Sci. 40: A145.

Vockenhuber C et al. (2004) New half-life measurement of ¹⁸²Hf: Improved chronometer for the early solar system. Phys. Rev. Lett. 93: art. no. 172501

Abs. No. **403** Meeting: **DMG 2008** submitted by: **Kleine, Thorsten** email: **kleine@erdw.ethz.ch** date: **2008-06-01** Req. presentation: **Vortrag** Req. session: **S02**