Lorandite from Allchar, a long-term double detector for pp-neutrinos and fast myons

Pavicevic M. K.1, Amthauer G.1, Anicin I.2, Bosch F.3, Boev B.4 and Pejovic V.2

1 University of Salzburg, faculty of material engineering & physics, A-5020 Salzburg
2 University of Belgrade, faculty of physics, RS-11000 Belgrade
3 GSI – Gesellschaft für Schwerionenforschung mbH, D-64220 Darmstadt
4 University of Stip, faculty of mining and geology, MK-92000 Stip

The Sb-As-Tl-Au deposit at Allchar, providing one of the world-wide largest concentrations of thallium and also numerous other Tl-bearing minerals, may open an outstanding scientific perspective. Allchar belongs to the Serbian – Macedonian metallogenic province located near the border between Macedonia and Greece. By a long-lasting international research it has been shown that Lorandite from Allchar can serve, together with cogenetic monitor minerals, as a geochemical detector for both, the flux of solar pp-neutrinos, averaged over the geological age of Lorandite, and for the average flux of fast cosmic myons within the same period of time.

By the capture of (mainly) solar pp-neutrinos with an unprecedented low threshold of only 52 keV for them, 205Tl is transformed to 205Pb. Our investigations show that about 22 atoms 205Pb in 1g Lorandite for the geological time range of 4.2 Ma and a palaeozoic depth of 570 m should be expected, by supposing the present solar neutrino luminosity and by taking into account its reduction due to neutrino flavour oscillations. However, an additional production of 205Pb occurs via the interaction of cosmic radiation (stopped and fast myons) with decay products of 238U and 232Th. The amount of this "underground" of 205Pb depends on the palaeozoic depth (actual depth plus eroded sheets) and the geological age of of the Tl-mineralization. Calculations based on known nuclear cross-sections show that fast myons generate by far the largest part of "underground" 205Pb atoms. The present state of research predicts, for palaeozoic depths of 350 m and 570 m, respectively, total numbers of 106 and 48 205Pb atoms per gram of Lorandite for 4.2 Ma, whereby the contributions from fast myons add up to 84 and 26 atoms of 205Pb, respectively. For the detection of the few 205Pb atoms we will apply SMS (Schotty Mass Spectrometry) at the ion storage ring of GSI (Gesellschaft für Schwerionenforschung, Darmstadt), where single fully-stripped 205Pb ions can be detected.

References:
Abs. No. 560
Meeting: DMG 2008
submitted by: Pavicevic, Miodrag
e-mail: miodrag.pavicevic@sbg.ac.at
date: 0000-00-00
Req. presentation: Poster
Req. session: S02