1H, 23Na and 29Si MAS NMR studies on T site substituted Cl-, Br-, NO2-, (OHH2O)- and H2O sodalites

Murshed, M. Mangir¹ Baer, Andrew J.² Gesing, Thorsten M.¹

¹Institute of Mineralogy and Centre for Solid State Chemistry and New Materials (ZFM), Leibnitz University Hannover, Callinstrasse 3, D-30167 Hannover, Germany ²Department of Chemistry, University of Toronto, Scarborough College, 1265 Military Trail, Toronto, Ontario, Canada, M1C1A4

Present address: MMM: Environmental Geochemistry, Institute of Geosciences, Johannes Gutenberg-University Mainz, Becherweg 21, 55099 Mainz, Germany; TMG: Crystallography, FB05 Geoscience, University Bremen, Klagenfurther Straße, 28359 Bremen

Key words: sodalites, ²⁹Si NMR, ²³Na MQMAS NMR

Abstract

Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) has been applied to chloride, bromide, nitrite, hydrohydroxy and hydro sodalites using 1H , 23 Na and 29 Si nuclei. The pure alumosilicate and gallosilicate sodalites exhibit a single symmetric peak in the 29 Si spectra. In the gallosilicate sodalites, the replacement of Al by Ga compressed the SiO₄ tetrahedra thereby reducing the TOT angles. Consequently the peak in the 29 Si spectra was shifted downfield due to Sideshielding. Partial substitution of Al with Ga led to five Q₄ signals due to SiO₄(Al₄), SiO₄(Ga₂Al₂),SiO₄(Ga₃Al)and SiO₄(Ga₄) environments around the SiO₄ tetrahedron. On average, each replacement of Al by Ga in the SiO₄(Al)₄ species led to a downfield shift of 1.3 ppm. In the bromide, iodide and nitrite sodalites (Ga = 30-70%), the intensities of the SiO₄(Al₄) and SiO₄(Ga₄) peaks in the 29 Si NMR spectra were significantly higher when compared to the other three environments. Such behaviour clearly demonstrates a nonstatistical distribution of Al and Ga, through the formation of Alenriched and Gaenriched domains within the crystals. It was possible to discriminate between the OH⁻, (OH·H₂O)⁻ and H₂O species residing in the sodalite β cages using 1 H NMR. In hydro sodalites, the 1 H dipolar coupling of two water protons were considerably reduced by fast dynamic site exchange on the NMR timescale. The 23 Na spectra were discussed in terms of Na coordination and NaO interatomic distances with increasing Ga content. The 23 Na Multiple Quantum MAS NMR experiments correlated signals in the isotropic (F1) and MAS dimension (F2), as the shifts in the F1 dimension were a linear combination of isotropic chemical shifts and secondorder quadrupolar shifts.

Abs. No. **566**

Meeting: **DMG 2008**

submitted by: **Gesing, Thorsten M.** email: **gesing@uni-bremen.de**

date: 2008-06-04

Req. presentation: Poster

Req. session: **S16**